DOI 10.1515/tmj-2016-0004

A characterization of weighted Besov spaces in quantum calculus

Akram Nemri¹ and Belgacem Selmi²

E-mail: ¹Akram.Nemri@fst.rnu.tn, ²Belgacem.Selmi@fsb.rnu.tn

Abstract

In this paper, subspaces of $L^p(\mathbb{R}_{q,+})$ are defined using q-translations $T_{q,x}$ operator and q-differences operator, called q-Besov spaces. We provide characterization of these spaces by using the q-convolution product.

2010 Mathematics Subject Classification. 33D60. 26D15, 33D05, 33D15, 33D90 Keywords. q-theory, q-weighted Besov spaces, q-Caldeón's formula, q-convolution product..

1 Introduction

Much recent research activity has focused on the theory and application of Quantum Calculus. This branch of mathematics continues to find new and useful applications. For example the so-called q-analogs of special functions and hypergeometric series, called q-series have many applications in arithmetic theory, combinatorics, quantum physic, group theory [2], and others areas of science and mathematics. Applications of this mathematics include population biology [5], geometric analysis [6], intelligent robotic control [9], approximation theory [22], and financial engineering [21], among others. Our interest in this paper is to characterize some weighted Besov spaces in Quantum Calculus, called weighted q-Besov spaces. In the classical case there are many ways to define Besov spaces see ([4], [20], [24], [25]).

In this paper we express q-Besov spaces in term of convolution $f *_q \varphi_t$ with different kinds of smooth functions φ . These spaces can be described by means of difference differential operator (see [14], [15], [18], [23]).

Throughout the paper weight $w : \mathbb{R}_{q,+} \longrightarrow \mathbb{R}_+$ will be a q-measurable function, w > 0 a.e., and we will give a characterization of weighted q-Besov spaces.

Our objective is to find weights where we can get such a characterization of weighted q-Besov spaces

$$\Lambda^{p,m}_{*,w,q} = B^{p,m}_{*,w,\varphi,q} ~~($$
 with equivalent seminorms)

where $\Lambda^{p,m}_{*,w,q}$ the space of even function $f:\mathbb{R}_q\longrightarrow\mathbb{C}$ such that

$$\| f \|_{\Lambda^{p,m}_{*,w,q}} := \left\{ \int_0^{+\infty} \frac{\| \nabla_{q,x} f \|_{q,p}^m}{w(x)^m} \frac{d_q x}{x} \right\}^{\frac{1}{m}} < +\infty, \quad (1 \le m < \infty)$$

and

$$\parallel f \parallel_{\Lambda^{p,\infty}_{*,w,q}} := \inf \left\{ C > 0; \parallel \nabla_{q,x} f \parallel_{q,p} \leq Cw(x) \quad a.e. \ x \in \mathbb{R}_{q,+} \right\}, \quad (m = +\infty)$$

¹Département de Mathematiques, Faculté des Sciences de Tunis, 1060 Tunis, Tunisia.

²Faculté des Sciences de Bizerte, Département de Mathématiques, 7021 Zarzouna, Tunisia.

where we have put $\nabla_{q,x} f(y) := T_{q,x} f(y) - f(y)$, and $B^{p,m}_{*,w,\varphi,q}$ the space of the even function $f: \mathbb{R}_q \longrightarrow \mathbb{C}$ belonging to $L^1(\mathbb{R}_{q,+}, \frac{d_q x}{(1+x)_q^2})$ satisfying

$$\| f \|_{B^{p,m}_{*,w,\varphi,q}} := \left\{ \int_0^{+\infty} \frac{\| \varphi_t *_q f \|_{q,p}^m}{w(t)^m} \frac{d_q t}{t} \right\}^{\frac{1}{m}} < +\infty, \quad (1 \le m < +\infty)$$

and

$$\parallel f \parallel_{B^{p,\infty}_{*,w,\varphi,q}} := \inf \Big\{ C > 0; \parallel \varphi_t *_q f \parallel_{q,p} \leq Cw(x) \quad a.e \quad t \in \mathbb{R}_{q,+} \Big\}, \quad (m = +\infty)$$

where $\varphi_t(x) := t^{-1}\varphi(t^{-1}x), \ t \in \mathbb{R}_{q,+} \text{and } x \in \mathbb{R}_+.$

The contents of the paper are as follows. In Section 2, we collect some basic definitions and results about q-harmonic analysis. In Section 3, we give condition about weight and prove the connection between the spaces $\Lambda_{*,w,q}^{p,m}$ and $B_{*,w,\varphi,q}^{p,m}$.

2 Preliminaries

In all the sequel, we assume $q \in (0,1)$ and we adapt the same notations as in [8].

• A q-shifted factorial is defined by

$$(a;q)_0 := 1,$$
 $(a;q)_n := \prod_{k=0}^{n-1} (1 - aq^k); \quad n = 1, 2, \dots, \infty,$

and more generally

$$(a_1, \cdots, a_r; q)_n := \prod_{k=1}^r (a_k; q)_n.$$

• The basic hypergeometric series or q-hypergeometric series are given for r, s integers by

$$_{r}\varphi_{s}(a_{1},\dots,a_{r};b_{1},\dots,b_{s};q,x):=\sum_{n=0}^{\infty}\frac{[(-1)^{n}q^{\frac{n(n-1)}{2}}]^{1+s-r}(a_{1},\dots,a_{r};q)_{n}}{(b_{1},\dots,b_{s};q)_{n}}\frac{x^{n}}{(q;q)_{n}}.$$

• The q-derivative $D_{q,x}f$ of a function f on an open interval is given by

$$D_{q,x}f(x) := \frac{f(x) - f(qx)}{(1-q)x}, \quad x \neq 0$$

and the q-derivative at zero [17] is defined by

$$D_{q,x}f(0) := \lim_{n \to +\infty} \frac{f(xq^n) - f(0)}{xq^n},$$

where the limit exists and independent of x.

• We also denote

$$[x]_q := \frac{1 - q^x}{1 - q}, \qquad [n]_q! := \frac{(q; q)_n}{(1 - q)^n}.$$

• The q-shift operators are

$$(\Lambda_{q,x}f)(x) := f(qx), \qquad (\Lambda_{q,x}^{-1}f)(x) := \Lambda_{q^{-1},x}f(x).$$

• We consider the q-difference operator

$$\Delta_{q,x} := \Lambda_{q,x}^{-1} D_{q,x}^2.$$

• The q-analogue of $(a+b)^n$ is a non commutative term $(a+b)^n_q$ given by

$$(a+b)_q^n := \begin{cases} a^n(-\frac{b}{a};q)_n, & a \neq 0 \\ q^{n(n-1)/2}b^n, & a = 0. \end{cases}$$

It is clear that $(a+b)_q^n$ and $(b+a)_q^n$ are not always the same. For future use, this definition can be generalized in a way similar to its ordinary counterpart by

$$(1+a)_q^\alpha := \frac{(1+a)_q^\infty}{(1+q^\alpha a)_q^\infty}$$

for any number α .

Proposition 2.1. For $n, k \in \mathbb{N}$

(i)
$$(a-x)_q^n = (-1)^n q^{\frac{n(n-1)}{2}} (x-q^{-n+1}a)_q^n$$

(ii)
$$D_{q,x}^k(x+a)_q^n = [n]_q.[n-1]_q...[n-k+1]_q(x+a)_q^{n-k}$$

(iii)
$$D_{q,x}^k \frac{1}{(1-x)_q^n} = \frac{[n]_q \cdot [n+1]_q \dots [n+k-1]_q}{(1-x)_q^{n+k}}$$

Proposition 2.2. For any number α, β

(i)
$$(1+x)_a^{\alpha} \cdot (1+q^{\alpha}x)_a^{\beta} = (1+x)_a^{\alpha+\beta}$$

(ii)
$$D_{q,x}(1+x)_q^{\alpha} = [\alpha]_q (1+qx)_q^{\alpha-1}$$

(iii) For $\alpha > 0$ and x = a + b,

$$2(1 + [a+b])_q^{\alpha} \le q^{\alpha(\alpha-1)/2}[(1+a)_q^{\alpha} + (1+b)_q^{\alpha}]$$

- $\mathbb{R}_q := \{ \pm q^k, k \in \mathbb{Z} \}; \quad \mathbb{R}_{q,+} := \{ +q^k, k \in \mathbb{Z} \}; \quad \widetilde{\mathbb{R}}_{q,+} := \{ +q^k, k \in \mathbb{Z} \} \cup \{ 0 \}.$
- The q-Jackson integral [16] from 0 to a (respectively from a to $+\infty$) is defined by

$$\int_0^a f(x)d_q x := (1-q)a \sum_{n=0}^{+\infty} f(aq^n)q^n, \quad \int_a^{\infty} f(x)d_q x := (1-q)a \sum_{-\infty}^{-1} f(aq^n)q^n.$$

Remark 2.1. Observe that the q-Jackson integral is a Riemann-Stieltjes integral [1] with respect to a step function having infinitely many points of increase at the points q^k , with the jump at the point q^k being q^k . If we call this step function $\Psi_q(t)$ then $d\Psi_q(t) = d_q t$.

Note that for $n \in \mathbb{Z}$ and $a \in \mathbb{R}_{q,+}$, we have

$$\int_{0}^{\infty} f(x)d_{q}x = \int_{0}^{a} f(x)d_{q}x + \int_{a}^{\infty} f(x)d_{q}x = (1 - q)\sum_{n = -\infty}^{\infty} f(q^{n})q^{n},$$

and

$$\int_0^a f\left(\frac{1}{x}\right) d_q x = \int_{qa^{-1}}^\infty f(x) \frac{d_q x}{x^2}, \qquad \int_s^\infty f\left(\frac{1}{x}\right) \frac{d_q x}{x} = \int_0^{qs^{-1}} f(x) \frac{d_q x}{x}. \tag{2.1}$$

Moreover, if f > 0 then

$$\int_0^{qs} f(x)d_q x \le \int_0^s f(x)d_q x, \qquad \int_a^\infty f(x)d_q x \le \int_{qa}^\infty f(x)d_q x \tag{2.2}$$

• The following definition of the q-cosine [10] is given by

$$\cos(x;q^2) := {}_{1}\varphi_1(0,q,q^2;(1-q)^2x^2) = \sum_{n=0}^{\infty} (-1)^n b_n(x;q^2),$$

where, we have put

$$b_n(x;q^2) := b_n(1;q^2)x^{2n} = q^{n(n-1)}\frac{(1-q)^{2n}}{(q;q)_{2n}}x^{2n}.$$

• The q-cosine Fourier transform \mathcal{F}_q and the q-convolution product are defined for suitable functions f, g as follows

$$\mathcal{F}_{q}(f)(\lambda) := \frac{(1+q^{-1})^{\frac{1}{2}}}{\Gamma_{q^{2}}(\frac{1}{2})} \int_{0}^{\infty} f(t) \cos(\lambda t; q^{2}) d_{q}t,$$

$$f*_q g(x) := \frac{(1+q^{-1})^{\frac{1}{2}}}{\Gamma_{\sigma^2}(\frac{1}{2})} \int_0^\infty T_{q,x} f(y) g(y) d_q y.$$

Here $T_{q,x}$, $x \in \mathbb{R}_{q,+}$ are the q-even translation operators defined by

$$T_{q,y}f(x) := \sum_{n=0}^{\infty} b_n(y; q^2) \Delta_{q,x}^n f(x)$$
 (2.3)

Remark that when $q \to 1^-$, the q-translation tends to the classical even translation σ_x given by

$$\sigma_x(f)(y) := \frac{1}{2} [f(x+y) + f(x-y)], \quad y \in [0, +\infty).$$

which has the following properties.

Proposition 2.3. For all $f, g \in L^1(\mathbb{R}_{q,+})$:

(i)
$$T_{q,x}f(y) = T_{q,y}f(x)$$

(ii)
$$\Delta_{q,x}T_{q,x}f(y) = \Delta_{q,y}T_{q,y}f(x)$$

(iii)
$$\int_0^\infty T_{q,x} f(y) d_q y = \int_0^\infty f(y) d_q y$$

(iv)
$$\int_0^\infty T_{q,x} f(y) g(y) d_q y = \int_0^\infty f(y) T_{q,x} g(y) d_q y$$

(v)
$$T_{q,x}\cos(ty;q^2) = \cos(tx;q^2)\cos(ty;q^2), \quad x, y, t \in \mathbb{R}_{q,+}.$$

In [7] the q-cosine Fourier transform satisfies the following:

Theorem 2.1. For
$$f \in L^1(\mathbb{R}_{q,+})$$
, $\mathcal{F}_q(f) \in \mathcal{C}_{*,q,0}(\mathbb{R}_q)$ and $\|\mathcal{F}_q(f)\|_{\mathcal{C}_{*,q,0}} \leq \frac{1}{(q(1-q))^{\frac{1}{2}}(q;q)_{\infty}} ||f||_{q,1}$.

Theorem 2.2. (Inversion formula)

(i) Let $f \in L^1(\mathbb{R}_{q,+})$ such that $\mathcal{F}_q(f) \in L^1(\mathbb{R}_{q,+})$, then for all $x \in \mathbb{R}_{q,+}$, we have

$$f(x) = \frac{(1+q^{-1})^{\frac{1}{2}}}{\Gamma_{a^2}(\frac{1}{2})} \int_0^\infty \mathcal{F}_q(f)(y) \cos(xy; q^2) d_q y. \tag{2.4}$$

(ii) \mathcal{F}_q is an isomorphism of $\mathcal{S}_{*,q}(\mathbb{R}_q)$ and $\mathcal{F}_q^2 = Id$.

They proved that \mathcal{F}_q can be extended to $L^2(\mathbb{R}_{q,+})$ and we have

Theorem 2.3. (q-Plancherel theorem type)

 \mathcal{F}_q is an isomorphism of $L^2(\mathbb{R}_{q,+})$, we have $||\mathcal{F}_q(f)||_{q,2} = ||f||_{q,2}$, for $f \in L^2(\mathbb{R}_{q,+})$ and $|\mathcal{F}_q|^{-1} = \mathcal{F}_q$.

In [13], the authors proved that

Proposition 2.4. For $f, g \in L^1(\mathbb{R}_{q,+})$ we have

(i)
$$\mathcal{F}_q(f *_q g) = \mathcal{F}_q(f)\mathcal{F}_q(g)$$

(ii)
$$\int_0^\infty \mathcal{F}_q(f)(\xi)g(\xi)d_q\xi = \int_0^\infty f(\xi)\mathcal{F}_q(g)(\xi)d_q\xi$$

(iii)
$$\mathcal{F}_q(T_{q,x}f)(\xi) = \cos(\xi x; q^2)\mathcal{F}_q(f)(\xi)$$
)

(iv) For
$$f \in L^p(\mathbb{R}_{q,+})$$
, $g \in L^1(\mathbb{R}_{q,+})$ then $f *_q g \in L^p(\mathbb{R}_{q,+})$ and $||f *_q g||_{q,p} \le ||f||_{q,p}||g||_{q,1}$.

Specially, we choose $q \in [0, q_0]$ where q_0 is the first zero of the function [11]: $q \mapsto {}_1\varphi_1(0, q, q; q)$ under the condition $\frac{\log(1-q)}{\log q} \in \mathbb{Z}$.

Let us now introduce some q-functional spaces which one will need in this work.

 \blacktriangleright $\mathcal{C}_{*,q,0}(\mathbb{R}_q)$ the space of even functions f defined on \mathbb{R}_q continuous at 0, and satisfying

$$\lim_{x\to\infty} f(x) = 0 \text{ and } \parallel f \parallel_{\mathcal{C}_{*,q,0}} = \sup_{x\in\mathbb{R}_q} |f(x)| < +\infty.$$

- ▶ $C_{*,q}^m(\mathbb{R}_q)$ the space of even functions m times q-differentiable on \mathbb{R}_q , continuous at 0. We equip this space with the topology of the uniform convergence of the functions and their q-derivatives.
- \blacktriangleright $\mathcal{S}_{*,q}(\mathbb{R}_q)$ the q-analogue of Schwartz space formed by the functions $f \in \mathcal{C}^{\infty}_{*,q,0}(\mathbb{R}_q)$ such that

$$\forall k, n \in \mathbb{N}, \ N_{q,n,k}(f) = \sup_{x \in \mathbb{R}_q} (1 + x^2)^n \mid D_{q,x}^k f(x) \mid < +\infty.$$

▶ $L^p(\mathbb{R}_{q,+}), p \in [1,+\infty]$, the space of functions f such that $||f||_{p,q} < +\infty$, where

$$|| f ||_{p,q} = \left(\int_0^\infty |f(x)|^p d_q x \right)^{\frac{1}{p}} < +\infty, \text{ for } p < \infty,$$

and

$$\parallel f \parallel_{q,\infty} = ess \sup_{x \in \mathbb{R}_{q,+}} \mid f(x) \mid < +\infty.$$

- ▶ $S_{*,q,0}$ the space of even functions $f \in S_{*,q}$ such that $\int_0^{+\infty} f(x)d_qx = 0$.
- ▶ $\mathcal{A}_{*,q}$ the space of even function $\varphi \in \mathcal{S}_{*,q,0}$ such that $\int_0^{+\infty} (\mathcal{F}_q \varphi(t\xi))^2 \frac{d_q t}{t} = 1$ for $\xi \in \mathbb{R}_{q,+}$.
- ▶ $\mathcal{A}_{*,1,q}$, the space of even function $\varphi \in \mathcal{A}_{*,q}$, $supp \varphi \subseteq [0,1]$, such that $\int_{0}^{+\infty} x \varphi(x) d_q x = 0.$

To establish the results of the paper, let us first the following notions.

 \blacktriangleright A weight w is said to satisfy q-Dini condition if there exists C>0 such that

$$\int_0^s \frac{w(t)}{t} d_q t < Cw(s); \quad a.e. \quad s \in \mathbb{R}_{q,+}.$$

▶ A weight w is said to be a $(b_{1,q})$ -weight if there exists C > 0 such that

$$\int_{as}^{+\infty} \frac{w(t)}{t^2} d_q t < C \frac{w(s)}{s}; \quad a.e. \quad s \in \mathbb{R}_{q,+}.$$

We also put $W_{0,1;q}$ the space of $(b_{1,q})$ -weight satisfy q-Dini condition.

Definition 2.1. Let $\varepsilon \geq 0$, $\delta \geq 0$ and w be a weight. w is said to be a $(d_{\varepsilon;q})$ -weight if there exists C > 0 such that

$$\int_0^s t^{\varepsilon} w(t) \frac{d_q t}{t} \le C s^{\varepsilon} w(s); \quad \text{a.e. } s > 0$$

w is said to be $(b_{\delta;q})$ weight if there exist C>0

$$\int_{as}^{+\infty} \frac{w(t)}{t^{\delta}} \frac{d_q t}{t} \le C \frac{w(s)}{s^{\delta}}; \quad \text{a.e. } s > 0.$$

We write $W_{\varepsilon,\delta;q} = (d_{\varepsilon;q}) \cap (b_{\delta;q})$.

Proposition 2.5. Let $\varepsilon \geq 0$, $\delta \geq 0$ and w be a weight, we have

- (i) If $w \in (d_{\varepsilon;q})$ then $w \in (d_{\varepsilon';q})$ for any $\varepsilon' > \varepsilon$
- (ii) If $w \in (b_{\delta;q})$, then $w \in (b_{\delta',q})$ for any $\delta' > \delta$
- (iii) If $\overline{w}(t) = w(t^{-1})$; then $w \in (b_{\varepsilon;q})$, if and only if, $\overline{w} \in (d_{\varepsilon;q})$
- (iv) If $w \in \mathcal{W}_{\varepsilon,\delta;q}$; then $w(t) \geq C \min(t^{-\varepsilon}, t^{\delta})$; C > 0.

Proof. The assertions (i) and (ii) follows after minor computations. Let prove (iii), (\Rightarrow) Let $w \in (b_{\varepsilon;g})$, from (2.1) we have

$$\int_0^s t^{\varepsilon} \overline{w}(t) \frac{d_q t}{t} = \int_0^s t^{\varepsilon} w(\frac{1}{t}) \frac{d_q t}{t} = \int_{qs^{-1}}^{\infty} \frac{w(u)}{u} \frac{d_q u}{u}$$

$$\leq C \frac{w(s^{-1})}{s^{-1}}$$

$$\leq C s^{\varepsilon} \overline{w}(s)$$

 (\Leftarrow) Let now $\overline{w} \in (d_{\varepsilon;q})$, again from (2.1)

$$\int_{qs}^{\infty} \frac{w(t)}{t^{\delta}} \frac{d_q t}{t} = \int_0^{s^{-1}} \frac{w(\frac{1}{x})}{\frac{1}{x^{\delta}}} \frac{d_q x}{x} = \int_0^{s^{-1}} x^{\delta} \overline{w} x \frac{d_q x}{x}$$

$$\leq C s^{-\delta} \overline{w} (s^{-1})$$

$$\leq C \frac{w(s)}{s^{\delta}}$$

then $w \in (b_{\varepsilon; q})$.

To prove (iv) we use the fact that w is a wight then there exist $s_1, s_2 > 0, C_1, C_2$ such that

$$w(s) \geq cs^{\delta} \cdot \int_{s}^{\infty} \frac{w(t)}{t^{\delta}} \frac{d_{q}t}{t} = cs^{\delta} \cdot A(s) \geq cs^{\delta} \cdot A(s_{1}) \geq C_{1}s^{\delta}$$

$$w(s) \geq cs^{-\varepsilon} \cdot \int_{0}^{\varepsilon} w(t)t^{-\varepsilon} \frac{d_{q}t}{t} = cs^{-\varepsilon} \cdot B(s) \geq cs^{-\varepsilon} \cdot B(s_{2}) \geq C_{2}s^{-\varepsilon}$$

then
$$w(s) \geq C \min(s^{-\varepsilon}, s^{\delta})$$
, where $C = \max(C_1, C_2)$.

Lemma 2.1. Every function $f \in \mathcal{S}_{*,q}$, can be written as

$$f(x) = \int_0^{+\infty} f *_q \varphi_t *_q \varphi_t(x) \frac{d_q t}{t}; \text{ for all } \varphi \in \mathcal{A}_{*,q}.$$

Proof. Let $g(x) = \int_0^{+\infty} f *_q \varphi_t *_q \varphi_t(x) \frac{d_q t}{t}$, then

$$\mathcal{F}_{q}g(\lambda) = \int_{0}^{+\infty} \int_{0}^{+\infty} f *_{q} \varphi_{t} *_{q} \varphi_{t}(x) t^{-1} \cos(\lambda x; q^{2}) d_{q}x d_{q}t$$

$$= \int_{0}^{+\infty} \mathcal{F}_{q}(f *_{q} \varphi_{t} *_{q} \varphi_{t})(\lambda) t^{-1} d_{q}t$$

$$= \int_{0}^{+\infty} \mathcal{F}_{q}(f)(\lambda) (\mathcal{F}_{q}(\varphi_{t})(\lambda))^{2} t^{-1} d_{q}t$$

$$= \mathcal{F}_{q}(f)(\lambda) \int_{0}^{+\infty} (\mathcal{F}_{q}(\varphi)(t\lambda))^{2} \frac{d_{q}t}{t} = \mathcal{F}_{q}(f)(\lambda).$$

From the fact that $\varphi \in \mathcal{A}_{*,q}$ and the use of the inversion formula we obtain the result.

Proposition 2.6. Let $\varphi \in \mathcal{A}_{*,q}$ and $\psi \in \mathcal{S}_{*,q}$, then for all $\xi \in \mathbb{R}_{q,+}$

$$\mathcal{F}_q \psi(\xi) = \int_0^{+\infty} \mathcal{F}_q(\varphi_t *_q \varphi_t *_q \psi)(\xi) \frac{d_q t}{t}.$$

Indeed, since $\varphi \in \mathcal{A}_{*,q}$, so

$$1 = \int_{0}^{+\infty} (\mathcal{F}_{q}\varphi(t\xi))^{2} \frac{d_{q}t}{t}$$
$$= \int_{0}^{+\infty} \mathcal{F}_{q}(\varphi_{t} *_{q} \varphi_{t})(\xi) \frac{d_{q}t}{t},$$

then from Lemma 2.1, and the first relation in Proposition 2.4, we can see easily that

$$\mathcal{F}_{q}\psi(\xi) = \int_{0}^{+\infty} \mathcal{F}_{q}(\varphi_{t} *_{q} \varphi_{t})(\xi) \mathcal{F}_{q}\psi(\xi) \frac{d_{q}t}{t}$$
$$= \int_{0}^{+\infty} \mathcal{F}_{q}(\varphi_{t} *_{q} \varphi_{t} *_{q} \psi)(\xi) \frac{d_{q}t}{t}.$$

Remark 2.2. The last proposition shows that

 $\psi_{\varepsilon,\delta;q} = \int_{\varepsilon}^{\delta} \varphi_t *_q \varphi_t *_q \psi \frac{d_q t}{t}$ converges to ψ in $\mathcal{S}_{*,q}$ as $\varepsilon \to 0$ and $\delta \to \infty$.

On the same way we recall the q-Calderón's formula studied and given in [19]

Theorem 2.4. Let $f \in L^1(\mathbb{R}_{q,+}, \frac{d_q x}{(x+1)^2_q})$ and $\varphi \in \mathcal{A}_{*,q}$. For $0 < \varepsilon < \delta$ define

$$f_{\varepsilon,\delta;q}(x) = \int_{\varepsilon}^{\delta} (\varphi_t *_q \varphi_t *_q f)(x) \frac{d_q t}{t}.$$

Then $f_{\varepsilon,\delta;q}$ converge to f in $\mathcal{S}'_{q,*,0}$ as $\varepsilon \to 0$ and $\delta \to \infty$.

To finish this preliminary section let us state the chief tool in our investigation, that is the Schur lemma [3] that will be useful for our purposes.

Lemma 2.2. (Schur lemma [3]) Let $1 and <math>\frac{1}{p} + \frac{1}{p'} = 1$. Let $(\Omega_1, \Sigma_1, \mu_1)$ and $(\Omega_2, \Sigma_2, \mu_2)$ be two σ -finite measure spaces and let $K: \Omega_1 \times \Omega_2 \longrightarrow \mathbb{R}_+$ be a measurable function and write $T_K(f)$ for

$$T_K(f)(w_2) = \int_{\Omega_1} K(w_1, w_2) f(w_1) d\mu_1(w_1).$$

If there exist C > 0 and measurable function $h_i : \Omega_i \longrightarrow \mathbb{R}_+ (i = 1, 2)$ such that

$$\int_{\Omega_{1}} K(w_{1}, w_{2}) h_{1}^{p'}(w_{1}) d\mu_{1}(w_{1}) \leq C h_{2}^{p'}(w_{2}); \quad \mu_{2} - a.e,$$
(2.5)

$$\int_{\Omega_2} K(w_1, w_2) h_2^p(w_2) d\mu_2(w_2) \leq C h_1^p(w_1); \quad \mu_1 - a.e.$$
 (2.6)

Then T_K defines a bounded operator from $L^p(\Omega_1, \mu_1)$ into $L^p(\Omega_2, \mu_2)$.

3 Characterization of q-Besov spaces

We begin first by establish some general technical results that can be used to relate properties about q-difference $\nabla_{q,x}f$ and q-convolutions $\varphi_t *_q f$.

Lemma 3.1. For all $y \in [0,1]$ and $\varphi \in \mathcal{A}_{*,q}$, we have

$$\|\nabla_{q,y}\varphi\|_{1,q} \le y \int_0^{+\infty} |D_{q,y}(T_{q,x}\varphi)(0)| d_q x.$$

Proof. Let $y \in [0,1]$ and $\varphi \in \mathcal{A}_{*,q}$, from Proposition 2.3 we have

$$\begin{split} \|\nabla_{q,y}\varphi\|_{1,q} &= \int_0^\infty |T_{q,y}\varphi(x) - \varphi(x)| d_q x \\ &= \int_0^\infty y. \left| \frac{T_{q,y}\varphi(x) - T_{q,0}\varphi(x)}{y} \right| d_q x \\ &= y \int_0^\infty \left| \frac{T_{q,x}\varphi(y) - T_{q,x}\varphi(0)}{y} \right| d_q x \\ &\leq y \int_0^\infty |D_{q,y}(T_{q,x}\varphi)(0)| d_q x \end{split}$$

which leads to the result.

Proposition 3.1. Let $p \in [1, \infty]$, $\zeta \geq 0$ and $\varphi \in \mathcal{A}_{*,q}$. Then there exist $C_q > 0$ such that if $f \in L^1(\mathbb{R}_{q,+}, \frac{d_q x}{(x+1)_q^2})$, then we have that

$$\| \varphi_t *_q f \|_{p,q} \le C_q \int_0^\infty \min((\frac{x}{t}), (\frac{t}{x})^\zeta) \| \nabla_{q,x} f \|_{p,q} \frac{d_q x}{x}$$
 (3.1)

and

$$\|\nabla_{q,x} f\|_{p,q} \le C_q \int_0^\infty \min((\frac{x}{t}), 1) \|\varphi_t *_q f\|_{p,q} \frac{d_q t}{t}.$$
 (3.2)

Proof. Since $\int_0^{+\infty} \varphi(x) d_q x = 0$, it follows that

$$\varphi_t *_q f(y) = \int_0^{+\infty} \varphi_t(x) \nabla_{q,x} f(y) d_q x,$$

from q-Minkowski's inequality one get

$$\begin{split} \|\varphi_{t} *_{q} f\|_{p,q} &= \left(\int_{0}^{+\infty} |\int_{0}^{+\infty} \varphi_{t}(x) \nabla_{q,x} f(y) d_{q} x|^{p} d_{q} y\right)^{\frac{1}{p}} \\ &\leq \int_{0}^{+\infty} |\varphi_{t}(x)| \left(\int_{0}^{+\infty} |\nabla_{q,x} f(y)|^{p} d_{q} y\right)^{\frac{1}{p}} d_{q} x \\ &\leq \int_{0}^{+\infty} \frac{x}{t} |\varphi(\frac{x}{t})| \|\nabla_{q,x} f\|_{p,q} \frac{d_{q} x}{x} \\ &\leq \int_{0}^{1} \frac{x}{t} |\varphi(\frac{x}{t})| \|\nabla_{q,x} f\|_{p,q} \frac{d_{q} x}{x} + \int_{1}^{+\infty} \frac{x}{t} |\varphi(\frac{x}{t})| \|\nabla_{q,x} f\|_{p,q} \frac{d_{q} x}{x}. \end{split}$$

Hence, the relation (3.1) follows from the trivial estimates, for y = x/t

$$y^{1+\zeta}|\varphi(y)| \le C_q \quad \text{if} \quad y \in [1,\infty),$$

 $|\varphi(y)| \le C_q \quad \text{if} \quad y \in [0,1].$

To prove (3.2) we recall that for $0 < \varepsilon < \delta$,

$$\nabla_{q,x} f_{\varepsilon,\delta}(y) = \int_{\varepsilon}^{\delta} (\nabla_{q,x} \varphi_t) *_{q} \varphi_t *_{q} f(y) \frac{d_q t}{t}$$
(3.3)

Hence q-Minkowski's inequality and q-Young's inequality give

$$\|\nabla_{q,x} f_{\varepsilon,\delta}\|_{p,q} \le \int_{\varepsilon}^{\delta} \|\nabla_{q,x} \varphi_t\|_{1,q} \|\varphi_t *_q f\|_{p,q} \frac{d_q t}{t}$$

Since $\|\nabla_{q,y}\varphi\|_{1,q} \leq 2\|\varphi\|_{1,q}$, $y \geq 1$, from Proposition 2.3, for a = 1/t and Lemma 3.1 one has

$$\begin{split} \|\nabla_{q,x}\varphi_t\|_{1,q} &= \int_0^\infty |\nabla_{q,x}\varphi_t(y)| d_q y = \int_0^\infty |T_{q,x}\varphi_t(y) - \varphi_t(y)| d_q y \\ &= \int_0^\infty \frac{1}{t} |T_{q,x} \left[\varphi(\frac{y}{t})\right] - \varphi(\frac{y}{t})| d_q y \\ &= \int_0^\infty \frac{1}{t} |T_{q,\frac{x}{t}} \left(\varphi(\frac{y}{t})\right) - \varphi(\frac{y}{t})| d_q y \\ &= \int_0^\infty |T_{q,\frac{x}{t}} \left(\varphi(u)\right) - \varphi(u)| d_q u \\ &= \|\nabla_{q,x/t}\varphi\|_{1,q} \\ &\leq C_q \min(1,\frac{x}{t}). \end{split}$$

Therefore, using the previous estimate relation (3.3), we get

$$\|\nabla_{q,x} f_{\varepsilon,\delta}\|_{p,q} \leq \int_{\varepsilon}^{\delta} \|\nabla_{q,x} \varphi_{t}\|_{1,q} \|\varphi_{t} *_{q} f\|_{p,q} \frac{d_{q} t}{t}$$

$$\leq C_{q} \int_{\varepsilon}^{\delta} \min(1, \frac{x}{t}) \|\varphi_{t} *_{q} f\|_{p,q} \frac{d_{q} t}{t}$$

Now using the q-Calderon's formula in Theorem 2.4 we obtain $\nabla_{q,x} f_{\varepsilon,\delta} \xrightarrow[\delta \to \infty]{\varepsilon \to 0} \nabla_{q,x} f$ in L^p , and then

$$\|\nabla_{q,x}f\|_{p,q} \leq \int_0^\infty \|\nabla_{q,x}\varphi_t\|_{1,q} \|\varphi_t *_q f\|_{p,q} \frac{d_q t}{t}$$
$$\leq C_q \int_0^\infty \min(1, \frac{x}{t}) \|\varphi_t *_q f\|_{p,q} \frac{d_q t}{t}.$$

Although for the purposes of this paper only a particular case of the following proposition will be used, we shall state a general version of it that we find interesting in its own right.

Proposition 3.2. Given ε , $\delta \in [0, \infty]$, $p \in (1, \infty)$ and w a weight, let us consider

$$\Theta_{\varepsilon,\delta}(s,t) = \frac{w(s)}{w(t)} \min((\frac{s}{t})^{\varepsilon}, (\frac{t}{s})^{\delta}).$$

If $w(s) = \lambda^{\frac{1}{p'}}(s)\mu^{-\frac{1}{p}}(s^{-1})$ for some pair of weights λ , $\mu \in \mathcal{W}_{\varepsilon,\delta;q}$, then there exist $C_q > 0$ and $g : \mathbb{R}_{q,+} \longrightarrow \mathbb{R}_+$ q-measurable such that

$$\int_{0}^{\infty} \Theta_{\varepsilon,\delta}(s,t)g^{p'}(s)\frac{d_{q}s}{s} \le C_{q}g^{p'}(t), \tag{3.4}$$

and

$$\int_{0}^{\infty} \Theta_{\varepsilon,\delta}(s,t)g^{p}(t)\frac{d_{q}t}{t} \le C_{q}g^{p}(s). \tag{3.5}$$

Proof. Let us take $g(t) = \lambda^{1/pp'}(t)\mu^{1/pp'}(t^{-1})$. Then $g^{p'}(s) = \lambda(s)/w(s)$ and $g^p(t) = w(t)\mu(t^{-1})$. Therefore from (2.2),

$$\begin{split} \int_0^{+\infty} \Theta_{\varepsilon,\delta}(s,t) g^{p'}(s) \frac{d_q s}{s} &= \frac{1}{w(t)} \int_0^{+\infty} \lambda(s) \min((\frac{s}{t})^{\varepsilon}, (\frac{t}{s})^{\delta}) \frac{d_q s}{s} \\ &= \frac{1}{t^{\varepsilon} w(t)} \int_0^t s^{\varepsilon} \lambda(s) \frac{d_q s}{s} + \frac{t^{\delta}}{w(t)} \int_t^{+\infty} \frac{\lambda(s)}{s^{\delta}} \frac{d_q s}{s} \\ &\leq \frac{1}{t^{\varepsilon} w(t)} \int_0^t s^{\varepsilon} \lambda(s) \frac{d_q s}{s} + \frac{t^{\delta}}{w(t)} \int_{qt}^{+\infty} \frac{\lambda(s)}{s^{\delta}} \frac{d_q s}{s} \\ &\leq C_q \frac{\lambda(t)}{w(t)} = C_q g^{p'}(t). \end{split}$$

On the other hand, same from (2.2),

$$\begin{split} \int_0^{+\infty} \Theta_{\varepsilon,\delta}(s,t) g^p(t) \frac{d_q t}{t} &= w(s) \int_0^{+\infty} \mu(t^{-1}) \min((\frac{s}{t})^{\varepsilon}, (\frac{t}{s})^{\delta}) \frac{d_q t}{t} \\ &= \frac{w(s)}{s^{\delta}} \int_0^s t^{\delta} \mu(t^{-1}) \frac{d_q t}{t} + s^{\varepsilon} w(s) \int_s^{+\infty} \frac{\mu(t^{-1})}{t^{\varepsilon}} \frac{d_q t}{t} \\ &= \frac{w(s)}{s^{\delta}} \int_{s^{-1}}^{\infty} \frac{\mu(t)}{t^{\delta}} \frac{d_q t}{t} + s^{\varepsilon} w(s) \int_0^{s^{-1}} t^{\varepsilon} \mu(t) \frac{d_q t}{t} \\ &\leq \frac{w(s)}{s^{\delta}} \int_{qs^{-1}}^{\infty} \frac{\mu(t)}{t^{\delta}} \frac{d_q t}{t} + s^{\varepsilon} w(s) \int_0^{s^{-1}} t^{\varepsilon} \mu(t) \frac{d_q t}{t} \\ &\leq C_q \mu(s^{-1}) w(s) = C_q g^p(s). \end{split}$$

We need the following Lemma that we will use after in several of the remaining proofs.

Lemma 3.2. For all $(x,y) \in (q^{\mathbb{Z}},q^{\mathbb{N}}), y \neq q$ we have

$$T_{q,y}\left(\frac{1}{(x+1)_q^2}\right) \le \frac{1}{1-q} \cdot \frac{1}{(x+1)_q^2}$$

Proof. Let $x, y \in \mathbb{R}_q$, from (2.3) a simple recurrence on $n \in \mathbb{N}$ leads

$$T_{q,y}\left(\frac{1}{(x+1)_q^2}\right) = \sum_{n=0}^{\infty} b_n(y;q^2) \Delta_{q,x}^n \left(\frac{1}{(x+1)_q^2}\right)$$

$$= \sum_{n=0}^{\infty} q^{n(n-1)} \frac{(1-q)^{2n}}{(q;q)_{2n}} [-2]_q [-3]_q ... [-1-2n]_q \frac{y^{2n}}{(q^n x+1)_q^{2n+2}}$$

$$= \sum_{n=0}^{\infty} q^{n(n-1)} q^{2n^2+n} [2n+1]_q \frac{y^{2n}}{(q^n x+1)_q^{2n+2}}$$

$$= \sum_{n=0}^{\infty} q^{n(n-1)} q^{2n^2+n} [2n+1]_q q^{-n(2n+2)} \frac{y^{2n}}{(x+q^{-n})_q^{2n+1}}$$

from the fact that for $x \in \mathbb{R}_q$

$$\begin{array}{ll} \frac{1}{(x+q^{-n})_q^{2n+1}} & = & \frac{1}{(x+q^{-n})(x+q^{-n+1})...(x+q^{-1})} \cdot \frac{1}{(x+1)_q^2} \cdot \frac{1}{(x+q^2)(x+q^3)...(x+q^{n+1})} \\ & \leq & \frac{1}{(x+1)_q^2} \; q^{\frac{n(n+1)}{2}} q^{\frac{-n(n+3)}{2}} \\ & \leq & \frac{q^{-n}}{(x+1)_q^2} \end{array}$$

we can deduce that for $y = q^k, k \neq 1$

$$T_{q,y}\left(\frac{1}{(x+1)_q^2}\right) = \sum_{n=0}^{\infty} q^{n(n-1)} q^{-n} [2n+1]_q \frac{y^{2n}}{(x+q^{-n})_q^{2n+1}}$$

$$\leq \frac{1}{(1-q)} \sum_{n=0}^{\infty} q^{n(n-1)} q^{-n} \frac{y^{2n}}{(x+1)_q^2}$$

$$\leq \frac{1}{(1-q)} \cdot \frac{1}{(x+1)_q^2} \cdot \sum_{n=0}^{\infty} q^{n(n-1)} (q^{-2}y^2)^n$$

$$\leq \frac{1}{(1-q)} \cdot \frac{1}{(x+1)_q^2} \cdot \frac{1}{1-q^{-2}y^2}$$

$$\leq \frac{1}{(1-q)} \cdot \frac{1}{(x+1)_q^2}.$$

the result follow.

Proposition 3.3. Let $p \in [1, \infty]$ and let f be a q-measurable function.

If
$$\|\nabla_{q,x}f\|_{p,q} \in L^1(\mathbb{R}_{q,+}, \frac{d_qx}{(x+1)_q^2})$$
 then $f \in L^1(\mathbb{R}_{q,+}, \frac{d_qx}{(x+1)_q^2})$.

Proof. Let $\Psi \in L^{p'}(\mathbb{R}_{q,+}, d_q x)$ such that $\Psi > 0$ a.e. Then q-Hölder's inequality and q-Fubini's theorem give

$$\int_0^{+\infty} \Big[\int_0^{+\infty} \frac{|T_{q,x}f(y)-f(y)|}{(x+1)_q^2} d_q x \Big] \Psi(y) d_q y < \infty.$$

Therefore,

$$\int_0^{+\infty} \frac{|T_{q,x}f(y) - f(y)|}{(x+1)_q^2} d_q x < \infty \quad \text{for } a.e. \quad y \in \mathbb{R}_{q,+}.$$

Now we have to prove that $f \in L^1(\mathbb{R}_{q,+}, \frac{d_q x}{(x+1)_q^2})$. From Proposition 2.3 and Lemma 3.2

$$\int_{0}^{+\infty} \frac{|f(x)|}{(x+1)_{q}^{2}} d_{q}x \leq \int_{0}^{+\infty} \frac{|T_{q,y}f(x) - f(x)|}{(x+1)_{q}^{2}} d_{q}x + \int_{0}^{+\infty} \frac{|T_{q,y}f(x)|}{(x+1)_{q}^{2}} d_{q}x \\
\leq \int_{0}^{+\infty} \frac{|T_{q,y}f(x) - f(x)|}{(x+1)_{q}^{2}} d_{q}x + \int_{0}^{+\infty} f(x) |T_{q,y} \left(\frac{1}{(x+1)_{q}^{2}}\right) d_{q}x \\
\leq \int_{0}^{+\infty} \frac{|T_{q,y}f(x) - f(x)|}{(x+1)_{q}^{2}} d_{q}x + \frac{1}{1-q} \int_{0}^{+\infty} \frac{|f(x)|}{(x+1)_{q}^{2}} d_{q}x \\
\leq \int_{0}^{+\infty} \frac{|T_{q,x}f(y) - f(y)|}{(x+1)_{q}^{2}} d_{q}x + \int_{0}^{+\infty} \frac{|f(y)|}{(x+1)_{q}^{2}} d_{q}x + \frac{2-q}{1-q} \int_{0}^{+\infty} \frac{|f(x)|}{(x+1)_{q}^{2}} d_{q}x.$$

Since $x \mapsto \frac{1}{(x+1)_q^2} \in L^1(\mathbb{R}_{q,+}, d_q x)$, then using (3.6), we obtain

$$\frac{1}{q-1} \int_0^{+\infty} \frac{|f(x)|}{(x+1)_q^2} d_q x \leq \int_0^{+\infty} \frac{|T_{q,y} f(x) - f(x)|}{(x+1)_q^2} |d_q x + \int_0^{+\infty} \frac{|f(y)|}{(x+1)_q^2} d_q x$$

$$< \infty \quad \text{for } a.e. \quad y \in \mathbb{R}_{q,+}$$

which leads to the result.

Now we start the main result of this paper with the case $m = \infty$ which easily follows from Proposition 3.1.

Theorem 3.1. Let $p \in [1, \infty]$, $\varphi \in \mathcal{A}_{*,q}$ and $w \in \mathcal{W}_{0,1;q}$. Then

$$\Lambda^{p,\infty}_{*,w,q} = B^{p,\infty}_{*,w,\varphi,q}$$
 with equivalent seminorms.

Proof. Let $f \in \Lambda^{p,\infty}_{*,w,q}$, then one has

$$\int_{0}^{+\infty} \frac{\|\nabla_{q,x} f\|_{p,q}}{(x+1)_{q}^{2}} d_{q} x \leq C_{q} \int_{0}^{\infty} \frac{w(x)}{(x+1)_{q}^{2}} d_{q} x
\leq C_{q} \Big[\int_{0}^{1} w(x) \frac{d_{q} x}{x} + \int_{1}^{\infty} w(x) \frac{d_{q} x}{x^{2}} \Big]
< \infty,$$

what combined with Proposition 3.3 gives $\int_0^\infty \frac{|f(x)|}{(x+1)_q^2} d_q x < \infty.$

Let us prove that $\|\varphi_t *_q f\|_{p,q} \leq C_q w(t)$. From (2.2) and (3.1) for $\zeta = 1$ one has

$$\|\varphi_{t} *_{q} f\|_{p,q} \leq C_{q} \left[\frac{1}{t} \int_{0}^{t} \|\nabla_{q,x} f\|_{p,q} d_{q}x + t \int_{t}^{\infty} \|\nabla_{q,x} f\|_{p,q} \frac{d_{q}x}{x^{2}}\right]$$

$$\leq C_{q} \left[\int_{0}^{t} \frac{x}{t} w(x) \frac{d_{q}x}{x} + t \int_{t}^{\infty} w(x) \frac{d_{q}x}{x^{2}}\right]$$

$$\leq C_{q} \left[\int_{0}^{t} \frac{x}{t} w(x) \frac{d_{q}x}{x} + t \int_{qt}^{\infty} w(x) \frac{d_{q}x}{x^{2}}\right]$$

$$\leq C_{q} w(t).$$

Conversely if $f \in B^{p,\infty}_{*,w,\varphi,q}$, then from (2.2) and (3.2) one has

$$\begin{split} \|\nabla_{q,x} f\|_{p,q} & \leq C_q \Big[\int_0^x \|\varphi_t *_q f\|_{p,q} \frac{d_q t}{t} + x \int_x^\infty \|\varphi_t *_q f\|_{p,q} \frac{d_q t}{t^2} \Big] \\ & \leq C_q \Big[\int_0^x \frac{w(t)}{t} d_q t + x \int_x^\infty \frac{w(t)}{t^2} d_q t \Big] \\ & \leq C_q \Big[\int_0^x \frac{w(t)}{t} d_q t + x \int_{qx}^\infty \frac{w(t)}{t^2} d_q t \Big] \\ & \leq C_q w(x). \end{split}$$

▶ We prove now the main Theorem in the case m = 1.

Theorem 3.2. Let $p \in [1, \infty]$, $\varphi \in \mathcal{A}_{*,q}$ and $w \in \mathcal{W}_{0,1;q}$ such that $\mu(t) = w^{-1}(t^{-1})$. Then $\Lambda^{p,1}_{*,w,q} = B^{p,1}_{*,w,\varphi,q}$ with equivalent seminorms.

Proof. Assume $f \in \Lambda^{p,1}_{*,w,q}$. Let us first prove that

$$\int_0^\infty \frac{|f(x)|}{(x+1)_q^2} d_q x < \infty.$$

From Proposition 2.5, we have

$$\frac{1}{xw(x)} \geq C_q \frac{1}{x} \min(1, \frac{1}{x}) \geq C_q \frac{1}{x} \min(x, \frac{1}{x}) \geq \frac{C_q}{(x+1)_q^2}.$$

Hence

$$\int_0^\infty \frac{\|\nabla_{q,x} f(x)\|_{p,q}}{(x+1)_q^2} d_q x \le C_q \int_0^\infty \frac{\|\nabla_{q,x} f\|_{p,q}}{w(x)} \frac{d_q x}{x} < \infty$$

and we apply Proposition 3.3 again.

We will prove that $||f||_{B^{p,1}_{*,w,g,g}} \leq C_q ||f||_{\Lambda^{p,1}_{*,w,g}}$.

Using (2.2) and (3.1) with $\zeta = 1$ we have

$$\int_{0}^{\infty} \frac{\|\varphi_{t} *_{q} f\|_{p,q}}{w(t)} d_{q}t \leq C_{q} \int_{0}^{\infty} \left[\int_{0}^{\infty} \min(\frac{x}{t}, \frac{t}{x}) \frac{\|\nabla_{q,x} f\|_{p,q}}{w(t)} \frac{d_{q}x}{x} \right] \frac{d_{q}t}{t} \\
= C_{q} \int_{0}^{\infty} \|\nabla_{q,x} f\|_{p,q} \left[\int_{0}^{\infty} \min(\frac{x}{t}, \frac{t}{x}) \mu(t^{-1}) \frac{d_{q}t}{t} \right] \frac{d_{q}x}{x} \\
= C_{q} \int_{0}^{\infty} \|\nabla_{q,x} f\|_{p,q} \left[\int_{0}^{x} \frac{t \mu(t^{-1})}{x} \frac{d_{q}t}{t} + \int_{x}^{\infty} \frac{x \mu(t^{-1})}{t} \frac{d_{q}t}{t} \right] \frac{d_{q}x}{x} \\
\leq C_{q} \int_{0}^{\infty} \|\nabla_{q,x} f\|_{p,q} \left[\frac{1}{x} \int_{qx^{-1}}^{\infty} \mu(t) \frac{d_{q}t}{t^{2}} + \int_{0}^{x^{-1}} \mu(t) \frac{d_{q}t}{t} \right] \frac{d_{q}x}{x} \\
\leq C_{q} \int_{0}^{\infty} \|\nabla_{q,x} f\|_{p,q} \left[\frac{1}{x} \int_{qx^{-1}}^{\infty} \mu(t) \frac{d_{q}t}{t^{2}} + \int_{0}^{x^{-1}} \mu(t) \frac{d_{q}t}{t} \right] \frac{d_{q}x}{x} \\
\leq C_{q} \int_{0}^{\infty} \|\nabla_{q,x} f\|_{p,q} \mu(x^{-1}) \frac{d_{q}x}{x} \\
\leq C_{q} \int_{0}^{\infty} \frac{\|\nabla_{q,x} f\|_{p,q}}{w(x)} \frac{d_{q}x}{x}.$$

Let $f \in B^{p,1}_{*,w,\varphi,q}$, from (2.2), (3.2) and q-Fubini's theorem we get

$$\int_{0}^{\infty} \frac{\|\nabla_{q,x}f\|_{p,q}}{w(x)} \frac{d_{q}x}{x} \leq C_{q} \int_{0}^{\infty} \|\varphi_{t} *_{q} f\|_{p,q} \Big[\int_{0}^{\infty} \mu(x^{-1}) \min(1, \frac{x}{t}) \frac{d_{q}x}{x} \Big] \frac{d_{q}t}{t} \\
= C_{q} \int_{0}^{\infty} \|\varphi_{t} *_{q} f\|_{p,q} \Big[\int_{0}^{\infty} \mu(s) \min(1, \frac{1}{st}) \frac{d_{q}s}{s} \Big] \frac{d_{q}t}{t} \\
= C_{q} \int_{0}^{\infty} \|\varphi_{t} *_{q} f\|_{p,q} \Big[\int_{0}^{t^{-1}} \frac{\mu(s)}{s} d_{q}s + \int_{t^{-1}}^{\infty} \frac{\mu(s)}{s^{2}} d_{q}s \Big] \frac{d_{q}t}{t} \\
\leq C_{q} \int_{0}^{\infty} \|\varphi_{t} *_{q} f\|_{p,q} \Big[\int_{0}^{t^{-1}} \frac{\mu(s)}{s} d_{q}s + \int_{qt^{-1}}^{\infty} \frac{\mu(s)}{s^{2}} d_{q}s \Big] \frac{d_{q}t}{t} \\
\leq C_{q} \int_{0}^{\infty} \|\varphi_{t} *_{q} f\|_{p,q} \mu(t^{-1}) \frac{d_{q}t}{t} \\
= C_{q} \int_{0}^{\infty} \frac{\|\varphi_{t} *_{q} f\|_{p,q}}{w(t)} \frac{d_{q}t}{t}.$$

Theorem 3.3. Let $p \in [1, \infty]$, $m \in (1, \infty)$, and w be a weight such that $w(t) = \lambda^{\frac{1}{m'}}(t)\mu^{-\frac{1}{m}}(t^{-1})$ for some pair of weights λ , $\mu \in \mathcal{W}_{0,1;q}$. Then for $\varphi \in \mathcal{A}_{*,q}$,

 $\Lambda^{p,m}_{*,w,q} = B^{p,m}_{*,w,\varphi,q}$ with equivalent seminorms.

Proof. Assume that $f \in \Lambda^{p,m}_{*,w,q}$. We will first show that

$$\int_0^\infty \frac{|f(x)|}{(x+1)_q^2} d_q x < \infty.$$

We denote

$$\Phi(x) = \frac{x}{(x+1)_q^2} w(x)$$

under the assumptions $\lambda, \mu \in \mathcal{W}_{0,1;q}$ one has $\Phi \in L^{m'}(\mathbb{R}_{q,+}, \frac{d_q x}{x})$. Indeed,

$$\int_{0}^{\infty} \Phi^{m'}(t) \frac{d_{q}t}{t} \leq \int_{0}^{\infty} \lambda(t) \mu^{-\frac{m'}{m}}(t^{-1}) \frac{t^{m'}}{(t+1)_{q}^{2m'}} \frac{d_{q}t}{t}.$$

Using Proposition 2.5 we have $\mu(s) \geq C_q \min(1, s)$. Therefore

$$\int_0^\infty \Phi^{m'}(t) \frac{d_q t}{t} \leq \int_0^\infty \lambda(t) \max(1, t^{m'-1}) \frac{t^{m'}}{(t+1)_q^{2m'}} \frac{d_q t}{t}$$

$$\leq C_q \Big[\int_0^1 \lambda(t) \frac{d_q t}{t} + \int_1^\infty \frac{\lambda(t)}{t} \frac{d_q t}{t} \Big]$$

$$< \infty.$$

Then using q-Hölder's inequality one has

$$\int_0^\infty \frac{\|\nabla_{q,x} f\|_{p,q}}{(x+1)_q^2} d_q x = \int_0^\infty \frac{\|\nabla_{q,x} f\|_{p,q}}{w(x)} \Phi(x) \frac{d_q x}{x} < \infty$$

and we apply Proposition 3.3.

Now we prove that

$$||f||_{B^{p,m}_{*,w,\varphi,q}} \le C_q ||f||_{\Lambda^{p,m}_{*,w,q}}.$$

From (3.1) in Proposition 3.1 and taking $\rho = 1$, it follows that

$$\frac{\|\varphi_t *_q f\|_{p,q}}{w(t)} \le \int_0^\infty K(x,t) \frac{\|\nabla_{q,x} f\|_{p,q}}{w(x)} \frac{d_q x}{x}$$

where

$$K(x,t) = \frac{w(x)}{w(t)}\min(1,\frac{t}{x}).$$

If we take

$$(\Omega_1, \mu_1) = (\mathbb{R}_{q,+}, \frac{d_q x}{x})$$

and

$$(\Omega_2, \mu_2) = (\mathbb{R}_{q,+}, \frac{d_q x}{x}).$$

Since $K(x,t) = \Theta_{0,1}(x,t)$, we can apply Proposition 3.2 with $\varepsilon = 0$ and $\delta = 1$ to get a q-measurable function g satisfying (3.4) and (3.5).

Now write $h_1(x) = g(x)$ and $h_2(t) = g(t)$. Obviously, using (3.4) and (3.5) give (2.5) and (2.6) in Lemma 2.2, what shows T_K is bounded from $L^m(\mathbb{R}_{q,+}, \frac{d_q x}{x})$ into $L^m(\mathbb{R}_{q,+}, \frac{d_q t}{t})$. Therefore,

$$||f||_{B^{p,m}_{*,w,\varphi,q}} \leq C_q ||T_K(\frac{||\nabla_{q,x}f||_{p,q}}{w(x)})||_{L^m(\mathbb{R}_{q,+},\frac{d_qt}{t})}$$

$$\leq C_q ||\frac{||\nabla_{q,x}f||_{p,q}}{w(x)}||_{L^m(\mathbb{R}_{q,+},\frac{d_qx}{x})}$$

$$\leq C_q ||f||_{\Lambda^{p,m}_{*,w,q}}.$$

Conversely, let $f \in \Lambda^{p,m}_{*,w,q}$. From (3.2) in Proposition 3.1 we obtain

$$\frac{\|\nabla_{q,x}f\|_{p,q}}{w(x)} \leq C_q \int_0^\infty \Theta(t,x) \frac{\|\varphi_t *_q f\|_{p,q}}{w(t)} \frac{d_q t}{t}$$

where

$$\Theta(t,x) = \frac{w(t)}{w(x)} \min(1, \frac{x}{t}).$$

Now take

$$(\Omega_1, \mu_1) = (\mathbb{R}_{q,+}, \frac{d_q x}{x})$$

and

$$(\Omega_2, \mu_2) = (\mathbb{R}_{q,+}, \frac{d_q x}{x}).$$

Combine now again Proposition 3.2 and Lemma 2.2 to get the boundedness of T_K from $L^m(\mathbb{R}_{q,+}, \frac{d_q x}{x})$ into $L^m(\mathbb{R}_{q,+}, \frac{d_q t}{t})$. Therefore,

$$||f||_{\Lambda^{p,m}_{*,w,q}} \leq C_q ||T_K(\frac{||\varphi_t *_q f||_{p,q}}{w(t)})||_{L^m(\mathbb{R}_{q,+},\frac{d_q x}{x})}$$

$$\leq C_q ||\frac{||\varphi_t *_q f||_{p,q}}{w(t)}||_{L^m(\mathbb{R}_{q,+},\frac{d_q t}{t})}$$

$$\leq C_q ||f||_{B^{p,m}_{*,w,q,q}}.$$

References

- [1] L. D. Abreu, Functions q-orthogonal with respect to their own zeros, Proc. Amer. Math. Soc. 134(2006), 2695-2701.
- [2] G. E. Andrews, q-Series: their development in analysis number theory, combinatorics, physics and computer algebra, CBMS Series, Amer. Math. Soc. Providence, RI, 66(1986), 223–241.
- [3] J. L. Ansorna and O. Blasco, Characterization of weighted Besov spaces, Math. Nachr., 171(1995), 5–17
- [4] O.V. Besov, On a family of function spaces in connection with embeddings and extentions, Trudy Math. Inst. Steklov, **60** (1966), 42–81.
- [5] M. Bohner, M. Fan and J. Zhang, Periodicity of scalar dynamic equaton and application to population models, J. Math. Anal. appl. **330** (2007), 1–9.
- [6] M. Bohner, T. Hudson, Euler-type boundary value problems in quantum calculus, International Journal of Applied Mathematics and Statistics, 9(2007), 19–23.
- [7] L. Dhaouadi, J. El Kamel and A. Fitouhi, *Positivity of q-even translation and Inequality in q-Fourier analysis*, JIPAM. J. Inequal. Pure Appl. Math **171**(2006), 1–14.
- [8] G. Gasper and M. Rahman, *Basic hypergeometric series*, Encyclopedia of mathematics and its applications 35, Cambridge university press, 1990.
- I. Gravagne, J. Davis and R. Marks II, How deterministic must a real time controller be, Proceedings of 2005, IEEE/RSI International Conference on intelligent Robots and Systems, Alberta, Aug. 2-6, (2005), 3856–3861.
- [10] A. Fitouhi and F. Bouzeffour, q-cosine Fourier transform and q-heat equation, Ramanjuan J. in press.
- [11] A. Fitouhi, L. Dhaouadi and J. El Kamel, *Inequalities in q-Fourier analysis*, J. Inequal. Pure Appl. Math. **171**(2006), 1–14.
- [12] A. Fitouhi, M. Hamza and F. Bouzeffour, The q- J_{α} Bessel function, J. Approx. Theory **115**(2002), 114–116.
- [13] A. Fitouhi and A. Nemri, Distribution and convolution product in quantum calculus, Afr. Diaspora. J. Math, 7(2008), 39–58.
- [14] T.M. Flett, Lipschitz spaces of functions on the circle and the disc, J. Math. Anal. and appl, 39(1972), 125–158.
- [15] T. M. Flett, Temperatures, Bessel potentials and Lipschitz spaces, Proc. London Math. Soc, 20(1970), 749–768.
- [16] F.H. Jackson, On q-definite integrals, Quart. J. Pure. Appl. Math, 41(1910), 193–203.

[17] V.G. Kac and P. Cheeung, Quantum calculus, Universitext, Springer-Verlag, New York, (2002).

- [18] A. Nemri and B. Selmi, Sobolev type spaces in quantum calculus, J. Math. Anal. Appl, 359(2009), 588–601.
- [19] A. Nemri and B. Selmi, On a Calderón's formula in quantum calculus, Indagationes Mathematicae, 24(2013), 491–504.
- [20] J. Peetre, New thoughts on Besov spaces, Duke Univ. Math. Series, NC, (1976).
- [21] S. Sanyal, *Stochastic dynamic equation*, PhD Dissertation, Missouri University of Science and Technology (2008).
- [22] Q. Sheng, M. Fadag, J. Henderson and J. Davis, An exploiration of combined dynamic derivatives on time scales and their applications, Nonlinear Analysis: Real World Applications, 7(2006), 395–413.
- [23] M. Taibleson, On the theory of Lipschitz spaces of distributions on euclidean n-space, I, II,III.
- [24] A. Torchinsky, Real-variable Methods in Harmonics Analysis, Academic Press, (1986).
- [25] H. Triebel, Theory of function spaces, Monographs in Math., vol. 78, Birkuser, Verlag, Basel, (1983).