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Abstract

In this paper, subspaces of LP(R4 1) are defined using g-translations Tj . operator and g-
differences operator, called g-Besov spaces. We provide characterization of these spaces by
using the g-convolution product.
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1 Introduction

Much recent research activity has focused on the theory and application of Quantum Calculus. This
branch of mathematics continues to find new and useful applications. For example the so-called
g-analogs of special functions and hypergeometric series, called g-series have many applications in
arithmetic theory, combinatorics, quantum physic, group theory [2], and others areas of science and
mathematics. Applications of this mathematics include population biology [5], geometric analysis
[6], intelligent robotic control [9], approximation theory [22], and financial engineering [21], among
others. Our interest in this paper is to characterize some weighted Besov spaces in Quantum Cal-
culus, called weighted g-Besov spaces. In the classical case there are many ways to define Besov
spaces see ([4], [20], [24], [25]).

In this paper we express g-Besov spaces in term of convolution f *, ¢ with different kinds of
smooth functions . These spaces can be described by means of difference differential operator (see
[14], [15], [18], [23)).

Throughout the paper weight w : R, . — R will be a g-measurable function, w > 0 a.e., and we
will give a characterization of weighted g-Besov spaces.
Our objective is to find weights where we can get such a characterization of weighted g-Besov spaces

o ppm . . :
A, =By, ((with equivalent seminorms )

where AL7 , the space of even function f : R, — C such that

TN Voo gy dgxy
= { [ e < Gsm<o)
0
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and

I

ppe 1= inf {c > 0;|| VoS llgp< Cw(z) ae. z€ RM}, (m = +00)
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where we have put V,.f(y) = T,.f(y) — f(y), and BYy', . the space of the even function

/R, — C belonging to L'(R, 4, (1_:733)3) satisfying

1
I 7] }7 < oo, (1< m< 4o0)

Bpm

ww,p.q”

4 /+°° g 11T dyt
w(t)™ t

and

I

where ¢(z) ==t ot 'z), t € Ry rand z € Ry.

pgroo = inf {C > 0; || wr g £ llgp< Cw(z) ae te Rq7+}, (m = 400)

*w,0,q

The contents of the paper are as follows. In Section 2, we collect some basic definitions and

results about g-harmonic analysis. In Section 3, we give condition about weight and prove the

connection between the spaces AL, and BLy o 4.

2 Preliminaries

In all the sequel, we assume ¢ € (0,1) and we adapt the same notations as in [8].

o A ¢-shifted factorial is defined by

(a;q)o =1, (a;9)n = H(l—aqk); n=12---,00,
and more generally

(a1, ar;@n == [ [ (ar; @)

k=1

e The basic hypergeometric series or g-hypergeometric series are given for r, s integers by

[oe] n(n—1)
[(71)”‘(1 2 ]1+87T(a17"' 5aT;Q)n ™
CL,"',(Z;b,"',b;q,l' = .
e m #0:7) Z‘; (b1, s bsi@)n (43 O)n

e The g-derivative D, ., f of a function f on an open interval is given by

f(z) = flgz)
(1-qx ~

and the g-derivative at zero [17] is defined by

Dy f (x) = T #0

)

Dynf(0) = tim @€ =JO)

n——+00 xq™

where the limit exists and independent of x.
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A characterization of weighted Besov spaces in quantum calculus 31

e We also denote

e The ¢-shift operators are
(Agaf)(@) = flgz),  (Agaf)(z) = Ag-1 . f ().
e We consider the g-difference operator
A A;;D;w.
e The g-analogue of (a + b)" is a non commutative term (a + b); given by

an(_g;q)na a‘#o
(a+b)g =
qn(n—l)/2bn’ a=0.

It is clear that (a + )y and (b+ a); are not always the same. For future use, this definition
can be generalized in a way similar to its ordinary counterpart by

(1+a)F

1 C= -
( + a)q (1 _’_qaa)go

for any number a.

Proposition 2.1. For n,k € N

n(n—1)

(i) (a—2)g =" = (x—qg " a)y

(i) D;“’z(x +a)y = [n]g.[n —1g...[n — k + 1]y (2 + a)g’k
(i) Df,“g; 1 _ [n]q.[n+1]q...[n—:k—1]q

Tl -a)g (1-2)7"

Proposition 2.2. For any number «, 3

(i) 1+2)8.(1+q¢")) =(1+a)0"’

(i) Dgo(1+ $)3 = [a]g(1+ qx)g_l
(iii) For @ > 0 and x = a + b,

2(1+ [a+b)2 < ¢ V2[(1+a)2 + (1+b)2]
o R, :={*¢" keZ}; Ryy:={+d"keZ}); Ry, :={+¢"keZ}u{o}.

e The g-Jackson integral [16] from 0 to a ( respectively from a to 400 ) is defined by

a +00 [e’e] -1
/0 f@)dgz == (1—q)a Y _ flag")q", / f@)dgz == (1—q)ay_ fag™)q".
n=0 a —c0
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Remark 2.1. Observe that the g-Jackson integral is a Riemann-Stieltjes integral [1] with
respect to a step function having infinitely many points of increase at the points ¢*, with the
jump at the point ¢* being ¢*. If we call this step function W, (¢) then d¥,(t) = d,t.

Note that for n € Z and a € R, 4, we have

/f d:cf/f dx+/f Ydgz = (1 —q) Zf

n=—oo

[ 0 [1(3)E=[" @ ey

Moreover, if f > 0 then

Oqs f(z)dyx < /0 f(z)dg, /a h f(x)dyx < /q Oo f(x)d,x (2.2)

and

The following definition of the g-cosine [10] is given by
cos(z;¢%) = 1¢1(0,¢,¢% (1 — 9)%2%) = > (=1)"bu(;6°),

where, we have put

1— 2n
bu(@:¢%) = by(1;¢%)a?" = q”("‘l)((q. q(Q 2",

The g-cosine Fourier transform F; and the g-convolution product are defined for suitable
functions f, g as follows

1

_1 1
F () = Hq / F(t) cos(\: %) d,

_ <1+q*1>% *
Fra00) = S [ Tt sy

Here T;,  , * € R, 4 are the g-even translation operators defined by

Tyyf(x Zb i q®) Ay f(x) (2.3)

Remark that when ¢ — 17, the g-translation tends to the classical even translation o, given by

Lo+ f@—v), yel, +oo).

o)) = 5

which has the following properties.
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A characterization of weighted Besov spaces in quantum calculus 33

Proposition 2.3. For all f,g € L'(R, ;) :
(i) Tyaf(y) =Toyf(2)
(i) AqaTyaf(y) = DgyTyyf (@)

i) [ Ty F ) gy = / " gy
(iv) /OOO Tyaf(y qy—/ fW)Tq29(y)dey

(v) T, cos(ty; ¢*) = cos(tx; ¢2) cos(ty; ¢), x,y,t € Ry 4.
In [7] the g-cosine Fourier transform satisfies the following:
Theorem 2.1. For f € LY (R, +), Fy(f) € Cuq0(R,) and
I Fa(F) £lq.1-

Cargo= (q(1 — q))%(% q)oo

Theorem 2.2. (Inversion formula)
(i) Let f € LY(R, +) such that F,(f) € L' (R, +), then for all z € R, 4, we have

—1 % 0o
o) = L [T F ) ) costays (2.0

(ii) Fy is an isomorphism of S, 4(R,) and fq2 = Id.
They proved that F, can be extended to L*(R, 1) and we have

Theorem 2.3. (g-Plancherel theorem type)
F, is an isomorphism of L?(R, ), we have ||F,(f)|lq2 = ||fllg.2, for f € L>(R,4) and F,~' =
Fq-

In [13], the authors proved that

Proposition 2.4. For f,g € L'(R, +) we have
(i) Fo(f *q9) = Fq(f)Fql9)

W) [ RD©0©E = [ HOF @O

(itl) Fo(Ty,0f)(E) = cos(Ex; ¢°) Fy(£)(€))
(iv) For f € LP(Ry4), g € Ll(Rqu) then fx, g € LP(Ry 4 ) and ||f x4 gllgp < [ fllg.pllgllq.1-

Specially, we choose ¢ € [0, go] where ¢qq is the first zero of the function [11]: ¢ — 1¢1(0,q,¢;q)
under the condition % e Z.
Let us now introduce some g-functional spaces which one will need in this work.
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» C.q0(R,) the space of even functions f defined on R, continuous at 0, and satisfying

lim f(z) =0 and || f|

T—00

Cergo= SUD | f(x)| < +o0.
T€R,

» CI",(R,) the space of even functions m times g-differentiable on R,, continuous at 0. We
equip this space with the topology of the uniform convergence of the functions and their
g-derivatives.

» S.q(Ry) the g-analogue of Schwartz space formed by the functions f € €2, 5(R,) such that

Vk,n €N, Nyni(f) = sup (142" | DF, f(z)|< +oo.
r€R,

» LP(R, +), p € [1,400], the space of functions f such that || f ||, < +00, where
> 1
7 llpa= (| 1£@)Pdya)} < oc, for p < oo,
0

and

| £ llg.co=€ss sup [ f(z) < +oo.
T€Rg, +

+oo
> S. 40 the space of even functions f € S, 4 such that / f(x)dqx = 0.
0

2 dqt
t

+oo
» A, , the space of even function ¢ € S, 4,0 such that / (Fyp(t8)) =1
0

for § € Ry 4.
» A. 1,4, the space of even function ¢ € A, 4, suppp C [0, 1], such that
+oo
/ zo(x)dyz = 0.
0

To establish the results of the paper, let us first the following notions.
A weight w is said to satisfy ¢-Dini condition if there exists C' > 0 such that

/ @dqt < Cw(s); ae. seR, .
0

A weight w is said to be a (b1 4)-weight if there exists C' > 0 such that

+oo t
/ %dqt < ngs); ae. s€Ry .
q

S

We also put Wy 1,4 the space of (b1 4)-weight satisfy ¢g-Dini condition.
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A characterization of weighted Besov spaces in quantum calculus

Definition 2.1. Let € > 0, § > 0 and w be a weight.
w is said to be a (dg,q)-weight if there exists C' > 0 such that

8 dgt
/ tsw(t)% < Cs*w(s); ae. s>0
0

w is said to be (bs,y) weight if there exist C' > 0

+oo
/ wt—i SC’w(S); a.e. s> 0.

50

S

q

We write Wk 5.4 = (de.q) N (bsyq)-

Proposition 2.5. Let € > 0, § > 0 and w be a weight, we have
(i) If w € (dg;q) then w € (d_,,) for any € >e

(ii) If w € (bs,q), then w € (by ) for any 5 >0
(iii) Ifw(t) = w(t™'); then w € (be, ), if and only if, W € (d.. )
(iv) If w € W, 5.4; then w(t) > C min(t~%,2%); C' > 0.

Proof. The assertions (i) and (ii) follows after minor computations. Let prove (iii),
(=) Let w € (be;q), from (2.1) we have

/‘ t%(t)@ = / tew(l)ﬂ :/ w(u) dgu
0 t 0 t t qs—l u u
)

< Cs"w(s)

IN
Q

(<) Let now @ € (d., ), again from (2.1)

Fw(t)dgt s w(t) d,x [ méﬁxdqx
0t - 1 o
qs 0 70 T 0 €T

IA A
Q Q
E %
(=2
Z g
B

then w € (beyq)-
To prove (iv) we use the fact that w is a wight then there exist s1,s2 > 0,C1, Cy such that
w(t) dgt

tTT = cs0.A(s) > ¢s°. A(s1) > C1 80

S

S

\%

)

o

. >
y\

g
©
v

¢ dgt
cs_E./ w(t)t_ET =c¢s °.B(s) > ¢s °.B(s3) > Cy8™°
0
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then w(s) > C'min(s¢,s%), where C' = max(Cy, Cy).

Lemma 2.1. Every function f € S, 4, can be written as

Feo dgt
flz) = /0 [ *q 0t %4 <pt(x)%; for all ¢ e A, ,.
Feo dgt
Proof. Let g(x) = / [ *q 01 %4 @t(x)Tq, then
0
+oo “+oo
]:qg(/\) = / / I *q ¢t *q ‘Pt(x)t71 cos(Az; q2)dqxdqt
0 0
+oo

Fo(f #q 1 g 01) (V) dgt

+oo
Fa(HN(Folp)(N)*t dgt

2ot

+oo
= fq(f)(k)/o (Fa(@)(tN)" == = Fa(H)(A).

From the fact that ¢ € A, ; and the use of the inversion formula we obtain the result.

Proposition 2.6. Let ¢ € A, , and ¢ € S, 4, then for all £ € R, +

Hoo dgt
qu(g) = 0 ‘Fq(@t *q Pt *q 1/’)(5)7
Indeed, since ¢ € A, 4, s0
Heo dgt
L= [ Gt
0
Foo dgt
=/ Falr tq 00)() =

then from Lemma 2.1, and the first relation in Proposition 2.4, we can see easily that

Foe d,t

qu(ﬁ) = o ]:q(@t *q @t)(f)fq'l/}(f)%
too dyt
= o Fopt *q ot *q w)(g)T

Remark 2.2. The last proposition shows that

s
dgt
e 5iq = ¢ *q Op *g W—— converges to 1 in S, , as € — 0 and § = oco.
859 Pt *q Pt *q ¢ ,q
€
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A characterization of weighted Besov spaces in quantum calculus 37

On the same way we recall the g-Calderén’s formula studied and given in [19]

Theorem 2.4. Let f € LY(R, 4, &752) and ¢ € A, 4. For 0 < ¢ < ¢ define

’ d
fesiq(@) = / (1 *q 1 *q f)(x)%t

. ’
Then f. 5,4 converge to fin S, , o ase— 0and d — oo.

To finish this preliminary section let us state the chief tool in our investigation, that is the Schur
lemma [3] that will be useful for our purposes.

1 1
Lemma 2.2. (Schur lemma [3]) Let 1 < p < oo and — + — = 1. Let (1,%, 1) and (Qg, Xo, o)

be two o-finite measure spaces and let K : ; x Q5 — R, be a measurable function and write
Tk (f) for

Tr(f)(w2) = ; K (w1, ws) f(wi)dp (wr).

If there exist C' > 0 and measurable function h; : Q; — Ry (i = 1,2) such that

’ ’

K(wy,w2)h} (w1)dpi(w1) < CBE (wa);  p2 —ae, (2.5)
Q

K (w1, wo)hb(wa)dus(we) < ChY(w1); p1 — ae. (2.6)
Q2

Then Tk defines a bounded operator from LP (€, py1) into LP (2, p2).

3 Characterization of ¢g-Besov spaces

We begin first by establish some general technical results that can be used to relate properties
about g-difference V. f and g-convolutions ¢, *4 f.

Lemma 3.1. For all y € [0,1] and ¢ € A, 4., we have

“+oo
IVen@llig <y / 1Dy (T 00) (0)dya.

Proof. Let y € [0,1] and ¢ € A, 4, from Proposition 2.3 we have

e = / | Tyyol) — o) | dga

_ /OO y ’Tq,y@(x) - Tq,OSD(x)
0 Yy
_ y/°° ‘TQ,xQD(y) —Tq,x@(O)’dqx
0 Yy

IVg,yel

dgx

IN

y/o | D,y (Tq,20)(0) | dg

which leads to the result. O
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38 A. Nemri, B. Selmi

Proposition 3.1. Let p € [1,00], ( > 0 and ¢ € A, 4. Then there exist Cy; > 0 such that if
feLY(R,+, (ﬁ‘;ify), then we have that

dgz

| o *q f Hp,qS Cq/o min((%), (%)C) [ Vouf ||p7q ; (3.1)

and
dgt

I Vaief U Co [ min(()1) s £ Ly 2 (32)

“+oo
Proof. Since / p(x)dgz = 0, it follows that
0

+oo
o *q fy) = /0 ee(2)Vgaf(y)dez,

from g-Minkowski’s inequality one get
+oo +oo 1
loesaflna = ([ 1 e@) VoGP dg)

+oo +oo N
< / oe(@)I( / Vg f ) Pdgy) b dga

dgx

+o0 T
< [ 7 eVl
0

xT

|8

dgx

IN

- .

1 “+o0
x x dgx x x
— le()IVg,e = / — le()IVg,z
/0 7 [eIVaefllpg=~ + o (Ve fllpg
Hence, the relation (3.1) follows from the trivial estimates, for y = x/¢

¥ o(y)]

Cyq if yell, o),
le(y)] Cy

it yelo,1].

INIA

To prove (3.2) we recall that for 0 < e < 6,

d

é
Valsv) = [ (Vo) 200050 1) (33)

~

Hence ¢-Minkowski’s inequality and ¢-Young’s inequality give

dyt

[
VauSesllna < [ 190mtrlvallorsy g™
g
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A characterization of weighted Besov spaces in quantum calculus 39

Since ||Vqy¢ll1.q < 2|l¢ll1,4» ¥ > 1, from Proposition 2.3, for a = 1/t and Lemma 3.1 one has
oo (oo}
= [ 1 Vawwr@) ldiy = [ | Tuails) = 200) | duy
0 0
“1 y y
AL
|17 o] = e 1
“1 y y
= [ 1Tz (o) — o) 1 day
0

= /OOO | Tg,z (p(u)) — o(u) | dgu

||vq,m/t@||1,q
Cymin(1, %)

||vq,z<Pt 1

IN

Therefore, using the previous estimate relation (3.3), we get

o
dgt
Woateslna < [ IVasilallocr flog™s
13

é
. x dt
< Gy [ min( Dllecs, Sl
€

Now using the g-Calderon’s formula in Theorem 2.4 we obtain Vg . fc s —O> Vgezf in LP, and
e—
d—00

then

IV,

> dgt
< [V g,zptlliqlloe *q f”pq +

< C/ min( ||<p dt

O
Although for the purposes of this paper only a particular case of the following proposition will be
used, we shall state a general version of it that we find interesting in its own right.

Proposition 3.2. Given ¢, § € [0,00], p € (1,00) and w a weight, let us consider

@575(5, t) =

1
If w(s) = A\~ (s)/f%(s_l) for some pair of weights A, € W, 5.4, then there exist Cy; > 0 and
g : Ry + — R g-measurable such that

/ O..5(s,t)g ()d8<Cg() (3.4)

and

/000 @s’g(s,t)gp(t)% < CygP(s). (3.5)
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Proof. Let us take g(t) = A/pp ()P (t~1). Then gp/(S)

Therefore from (2.2),

dys
s

+o0 ,
/ O.5(s,t)g"” (s)
0

On the other hand, same from (2.2),

400

Oc5(s,t)g"(t) :
0

dgt

IN

IN

A. Nemri, B. Selmi

A(s)/w(s) and gP(t) = w(t)u(t™").

= i +OO s)min((-)¢ E‘S%
= o Aemin G
=L e as [T A dos
N tfw(t)/o sA(s) s w(t)/t s9 s
1 b dys 0 [T N(s) dys
S Fel /0“(3)? w® / o s
< 2% —cu .
+oo
w(e) [ e min((D. ()
w(s) [*° +oo -1
8(5)/0 té (tfl)dq + 5 (8)/8 :u(is )%
[T ) [
MR e [ %

Cp(s™w(s) = Cg?(s).

We need the following Lemma that we will use after in several of the remaining proofs.

Lemma 3.2. For all (z,y) € (¢%,¢"), y # ¢ we have

1 1

Tay ((

1 <
r+1)2

T 1l-q (z4+1)2

Proof. Let z,y € Ry, from (2.3) a simple recurrence on n € N leads
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A characterization of weighted Besov spaces in quantum calculus
1 > 1
T = by 5 2 A7
q’y<(x+1)§) nz;) wa) q’x<(x+1)§>
(1—q)?* y>"
n(n—1)
= q 2l4-3lg---[-1 = 2n|,——————5
Z q q)2n [ ]q[ ]q [ ] (q z + 1)2n+2
2n
_ n(n—1) 2n%+n 9 Y
= q q n+1ly————=515
> o
0 2n
_ n(n—1) 2n24n —n(2n+2) Yy
= q q [2n +1]4q T
2 ' (x+g=m)7" "
from the fact that for x € R,
1 B 1 1 1
(x+q )" (z+q ) (@+g ). (z+q7) (@ + 12 (@ + ¢*)(z + ¢%)...(x + ")
< 1 LICEPIELICES)
= @rnz 1
Tt
(r+1)2
we can deduce that for y = ¢*, k # 1
o () Z”(”” "on+ 1, —
Y\ 7 e = q q "|12n T v onrl
o\t (PR
1 e y2n
< qn(n—l)q—n
=y @+ 10
1
< qn(n 1) —2 2)
(1—q) (x+1)2 1) Z
1 1 1
< . .
(1-q) (z+1); 1—g 2y
< 1 1
- (-9 (@+1)7
the result follow.

Proposition 3.3. Let p € [1,00] and let f be a g-measurable function.

d d
ot ) then f € L' (R, +, a?

If . L'Ry 4, — 5 12
I Vaaf llpa€ L (R4, (@+1)2 (z+1)2

).
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Proof. Let ¥ € LP (R, 4+,dqx) such that ¥ > 0 a.e. Then g-Hélder’s inequality and ¢-Fubini’s

theorem give
[ B0 g <
0 0 (z+1)2 1 !

Therefore,

—+o0 _
/ |Tq’m(f(y) f<y)|dqx <oo for ae. yeR,;.
0

r+1)2
Now we have to prove that f € L*(R, 4, (xciqﬁ)g)' From Proposition 2.3 and Lemma 3.2
e
I [ g
[ [
o [t OIP [Tl DL o i 2 [ L) e

Since z — ﬁ € L'(R, +,d,z), then using (3.6), we obtain
q

1 o f(a) | T Ty f (@) — f(2) | ) | -
q—1/0 (x+1)2dqx = /0 (x+1)2 | dg +/O (x+1)gdq

q
< oo for a.e. yeRy ¢

which leads to the result. (]
» Now we start the main result of this paper with the case m = oo which easily follows from
Proposition 3.1.

Theorem 3.1. Let p € [1,00], ¢ € A, 4, and w € Wy 1,4. Then
APS° = BDo° with equivalent seminorms.

*,W,q *,W,0,q

Proof. Let f € AW, then one has

e ||vq,zf|‘p7q > w(z)
/0 7@_’_1)3 dgx < Cq/o (m+1)3dqx
! d,x > d,x
< 29 29
< ol [ v+ [ )]
< ;
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f(z)]
+1)3

1 dgx < 0.
Let us prove that ||¢; *4 fllp,q < Cqw(t). From (2.2) and (3.1) for ¢ =1 one has

oo
what combined with Proposition 3.3 gives / (|
0

dqz

P7ql, ]

1 t [e’e]
love g < Col [ 19asflpadir+t [ 19501

< al [ Fuw™ vt [T uw )

I
S
o\“

RS
&
&

Q&.

&
+
_——
8
£
<
I_‘R

< Cyuw(t).

Conversely if f € BLy . then from (2.2) and (3.2) one has

: dgt > dyt
Waefloa < Cal [ llovsa g™+ [ dt,
< ol [ Wapes [T
o t .t
< Gl f) S [ G
o t gr T
< Cuul(e).

» We prove now the main Theorem in the case m = 1.

Theorem 3.2. Let p € [1,0], ¢ € A, and w € Wy 1,4 such that p(t) = w=(¢t7!). Then

» .1 . . .
A*’w q=BVu.oq with equivalent seminorms.

Proof. Assume f € A* ‘w,q- Let us first prove that

@,
/0 (x+1)3dq < 0.

From Proposition 2.5, we have

Hence

Ve ()l |Vt llpa do
A (xrnz ‘o <C/ et <

and we apply Proposition 3.3 again.
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< Cyllfll e .

Using (2.2) and (3.1) with { = 1 we have

r

et *q fllp,a dgt
w(t)

IN

IN

IN

IN

IN

Let f € BV, “wop,q, from (2.2), (3.2) and ¢-Fubini’s theorem we get

/°° IVq,
0

Theorem 3.3. Let p € [1,00], m € (1, 0),

w(x)

J?

T

IN

IN

° < z E ||qupr i @
C/ [/ mm(t x) w(t) x] t
dgt, dgx
Co [ I¥uaflpal [ min(G. Do) ] %
tp(t! )@ /°° ap(t™") dgt dgx
Co [ IWaadlygl [0 [T
> 1 [ dgt ax dgt T
Co | WWastloaly, [ w05+ [ w55
o0 1 (> dgt (% dgtodga
Co | WWaetloaly [ m05 5 [ w057
> dyx
Cy [ IVaulpanla 1)&
0
. /°° ||vq, dyt
X
e > B . T . dordgt
Co [ Norwa fllnal [t minga, %] %!
0 0 x t
o > . 1 s.dgt
Co [ Worsa Slpal | wts)mingr, )" %2
o0 e > u(s dgt
Cq/o llos *q f”p,q[/o i )dq +/t*1 M(z)dq ]Tq
0 =1 e}
(s) p(s) , qdgt
Cq/o llot *q f”p,q[/o dq8+/qt1 52 dq ]Tq

C/
0
CQ/

0

ot *q f”p,q/‘(t_l)*

et *q fllp,q @
w(t) t

O

1

and w be a weight such that w(t) = )\ﬁ(t)/fﬁ(t_l)

for some pair of weights A, 1 € Wy, 1,4. Then for ¢ € A, 4,

AP

*,W,q

= B

*,W,0,q

with equivalent seminorms.
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Proof. Assume that f € AV . We will first show that
[F g
0

(x+1)2
We denote
O(x) = mw(x)

under the assumptions A, 1 € Wy 1,4 one has ¢ € o Ry +, %) Indeed,
o0 , d t o0 !
| e o< [ awn
0 t 0

™ dgt
Using Proposition 2.5 we have u(s) > Cymin(1, s). Therefore

m
m

(tﬂ)i(wl)gm’ -

’

tm dgt

o0 ’ dt oo ’
o™ (1)L < / A(t) max(1,t™ 1) ———
JARC A

t
1 s}
Gl A [T

< 0o0.

IN

Then using g-Holder’s inequality one has

[ Wazllna o [~ Vaxllba g et
o @+ 0w z

and we apply Proposition 3.3.

Now we prove that

[ fllgzm . < Collfllazm, -
From (3.1) in Proposition 3.1 and taking p = 1, it follows that
et *q fllp,g < /OO K(z,t) 1Vaafllpa d‘li
w)  ~Jo w(z)
where
w(z)
K(x,t) = —= 1, —
(@.t) = S min(1, 1)
If we take

(leul) = (Rq,—i-v 7)
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and
dyx

(QQ?N’Q) = (Rq7+5 7)

Since K (z,t) = ©¢1(z,t), we can apply Proposition 3.2 with e = 0 and 6 = 1 to get a g-measurable
function g satisfying (3.4) and (3.5).

Now write hy(z) = g(x) and ha(t) = g(t). Obviously, using (3.4) and (3.5) give (2.5) and (2.6)
in Lemma 2.2, what shows Tk is bounded from L™ (R, 4, dng) into L™ (Rq,+, #) Therefore,

IV flp.ag
||f||Bf:;’;l’qu S CQHTK(W)HLWL(RLI’_F’%)

IN

A
Cll i

< Collfllazz,-

||Lm<Rq,+,qu’>

Conversely, let f € AL 4. From (3.2) in Proposition 3.1 we obtain

Vg, fllp.q < o /OO o(t,z) ot *q fllp,a dqt
0

w(zx) w(t) t
where
w(t)
O(t, 1, —

(t.0) = o5 min(1, )

Now take
dqx

(thu'l) = (Rq,—h %)

and
dgx
(Qa, p2) = Ry 4, —=).
d
Combine now again Proposition 3.2 and Lemma 2.2 to get the boundedness of Tk from L™ (R, ., Lx)
x
into L™ (Rq,+, %) Therefore,
ot *q fllp.g
Hf”Ai’;IEﬁq < C‘IHTK(W)”LM(RW,%TI)
[0t *q fllp,q
S Cq” ’LU(t) ||Lm(Rq1+7%)
< Cyllfllszm,.
|
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